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ABSTRACT ARTICLE HISTORY
This work examines the volumetric effect of convection within a packed bed in Received 11 January 2016
the presence of collimated irradiation. Using a modified P-1 approximation Accepted 1 April 2016
incorporating a local thermal nonequilibrium (LTNE) model, the energy

transportation through convection and thermal conduction, and collimated

and diffuse radiative transfer are investigated. The impact of pertinent

parameters such as porosity @, pore diameter dp, and optical thickness T on the

volumetric effect are analyzed. In addition, the mechanisms of how the

volumetric effect impacts LTNE and radiative heat loss are revealed. The effect

of the volumetric heat transfer coefficient h,, the fluid flow velocity u, and the

ratio of solid to fluid thermal conductivities  versus the volumetric effect are

systematically analyzed and displayed through a number of contour maps to

assess the efficiency n. Our analysis shows that enhancing the volumetric effect

and extending the thickness of the porous medium improves the efficiency n.

1. Introduction

The “volumetric effect” phenomenon can occur in a porous medium as the radiative energy is
converted to the energy of the fluid. A unique feature of the heat transfer process occurring under
a volumetric effect in porous media is that both the inlet fluid flow and the incoming radiation
are located at the irradiated side. In addition, the direction of the fluid flow is parallel rather than
perpendicular to the radiative flux in the porous media. Due to the structural characteristics of porous
media [1], the incoming radiation and the heat transfer process is extended from “surface” to
“volume.” Therefore, the outlet fluid temperature should be higher than that of the solid matrix
on the irradiated surface (see Figure 1). Consequently, higher radiative flux (without reaching the
temperature limit of the material), less thermal radiative loss, and an increased thermal efficiency
can be achieved, which is termed the volumetric effect.

Convective heat transfer processes in porous media as well as local thermal nonequilibrium
(LTNE) models incorporating the temperature difference between solid and fluid phases have been
discussed in the literature [2-4]. Variants of this model were offered by Alazmi and Vafai [5] who
considered the effects of non-Darcy, dispersion, nonequilibrium, and variable porosities. The effect
of different boundary conditions under LTNE conditions was studied by Yang and Vafai [6]. Thermal
radiation behavior plays an important role in packed and fluidized beds where the temperatures are
extreme [7]. Flamant et al. [8] investigated the radiation transfer process in a double-layer structure
(glass bed and SiC porous layer) by experimentally using a two-flux approximation to obtain the
temperature distribution. Using the same method, Skocypec et al. [9] analyzed the model for use
in the oxidized wires in an air receiver; their results compared quite well with the experimental results
of Chavez and Chaza [10]. Wang et al. [11] proposed a detailed dimensionless LTNE model under a
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Nomenclature
[ specific heat of fluid at constant pressure g extinction coefficient (m™")
Jkg 'K IS Stefan—Boltzmann constant
F inertial coefficient s scattering coefficient
dp pore diameter (m) 0 dimensionless temperature
G incident radiation ¢ ratio of solid to fluid thermal conductivities
hgr fluid-to-solid heat transfer coefficient (W m—2 K) p density (kg m™)
K permeability (m?) T optical thickness
L thickness of a absorber (m) ® single scattering albedo
Nu Nusselt number Y dimensionless heat flux
P pressure (Pa)
Pr Prandtl number Subscripts
qo initial heat flux (W m™?) a average
q heat flux c collimated
s unit vector in the direction of fluid flow d diffuse
T temperature (K) e effective/environment
u velocity (ms™") f fluid phase
\% velocity vector (ms™") 1 heat loss
Of specific surface area of the porous medium (m~') ¥ radiative
€ emissivity s solid phase
] porosity t total
A thermal conductivity (W m 'K v void
u dynamic viscosity (kg m~' s") w wall

Rosseland approximation for an air receiver. Wang et al. [12] have analyzed the transport of radiative
energy, under collimated irradiation perpendicular to a packed bed. Some works have focused on
applications such as solar dish receivers using different numerical methods [13].

Little attention has been devoted to the effect of collimated irradiation on a porous bed, and volu-
metric effect revealed from this heat transfer process has not been reported. The purpose of this study
is to understand the volumetric effect phenomenon under collimated irradiation based on an LTNE
model in a porous bed. The effect of geometric parameters such as the porosity ¢, the pore diameter
dp, and the optical thickness T on the volumetric effect of porous media will be examined. Further-
more, energy transportation incorporating thermal conduction, convection, radiative heat transfer,
and also heat loss will be analyzed from the perspective of the volumetric effect. Finally, the thermal
efficiency n for a wide range of variations in the geometric parameters, that is, porosity ¢ and pore
diameter d,,, will be systematically analyzed within a number of contour maps.

2. Model

A fundamental configuration composed of a parallel plate channel filled with a porous medium is
considered and shown in Figure 1. The computational area has a thickness L, and the height H in
the y direction is assumed to be sufficiently long so that a one-dimensional approximation in the
direction of the incoming irradiation can be invoked. We also assume that the solid matrix is homo-
geneous and isotropic so that any variations in the solid and fluid phase thermal properties can be
disregarded. Furthermore, the flow is considered to be steady and fully developed.

2.1. LTNE model
Continuum equation:
V(V)=0 (1)

Momentum equation [2,3]:

Pt _ Moo, £ Ko PiFo )
6<(V'V)V> N (V) = V{P) =5 (V) VR (V) - (V)] (2)
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Figure 1. Schematic diagram of the volumetric effect phenomenon.

where (P)' is the gauge pressure, and the local volume average of a quantity ® can be defined as
(D) = Vlf v, @dV; ] is a unit vector oriented along the velocity vector where the permeability K
and empirical function F which depends primarily on the microstructure of the porous medium

can be represented as in Vafai [2]:
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Energy equations:

Fluid phase:
(Pep)(V) - V(Tr) = V(e - V(Ti)) + hras ((Ts) — (Ti)) (5)
Solid phase:
0=V (hse - V(T5) = qr) = hsrase((Ts) = (Tr)) (6)
where the effective thermal conductivity for the fluid and solid phase are expressed as follows:
Me = Qhfe (7)
Me = (1= @)hse (8)

A detailed comparison of the correlations for the volumetric heat transfer coefficient A, for the porous
medium was performed by Wang [14]. As for the large porosity and pore diameter used in this study,
the empirical correlation established by Younis and Viskanta [15] is selected and can be presented as
follows:

0.36[14155(dp /L)]

h, = 0.819(1 — 733(d, /L)) Re, (9)

2.2. Radiation transfer

Due to the collimated irradiation assumption, a modified differential approximation (P-1 model) is
applied to address the problem. When incident collimated irradiation is removed from the intensity
field, the remnant intensity can deviate only slightly from the isotropic condition. Similar to the
classic P-1 model, we treat the remnant portion as fairly diffuse, which is the result of emission
from the boundary and within the medium, and also the radiation scattered away from the
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collimated irradiation. We thus express the diffuse radiative flux g4 and the incident radiation G4 as
follows:

Vqa = x(40(T,)* ~Gq) + 6,G. (10)
1
qa = _%VGd (11)

Combining the expression of g4 and G4 from Egs. (10) and (11), the differential equation for G4 is
obtained as

1
0= ﬁvcfi + K (40(T)*~Gq) + 0,G: (12)
Meanwhile, g, the remnant collimated radiative flux after partial extinction through absorption and
scattering along its path in a direction perpendicular to the boundary, is given by the exact solution:

q. = 8Gc = qoe”" (13)

where the optical thickness T is given by T = /x, the extinction coefficient p is the sum of the absorption
k and the scattering coefficients oy, and the initial incoming irradiation g.=1MW. Hsu and Howell
[16] presented a method of simultaneously inverting the conductivity and extinction coefficient from
the experimental data. The trend of the change of extinction coefficient shows a good agreement with
the geometric optics limit prediction [17] in the proper range of geometric parameters:

\j
p= R (1—9) (14)
P
where the value of ¥ is constant based on the properties of reticulated porous ceramic (RPC) [18].
Other experimental test results show that the thermal radiative properties of RPC material are almost
independent of the solid matrix temperature [19]. The detailed expressions are given as follows:

K:<z—s>;’7p<1—<p> (15)

-, szzp(l—(p) (16)

2.3. Boundary conditions

Boundary Condition 1: Irradiated surface

The inlet of the fluid flow is the irradiated surface and the only source of radiative heat loss. In the
model, we disregard the effect of the porous structure on inlet fluid flow and irradiation at the bound-
ary wall. The wall is treated as a transparent virtual surface; that is homogeneous and diffusely gray
with emissivity e. Under this assumption, the total incoming irradiation eq, entering the porous
medium is constant with the change of its geometric parameters. The remnant part of the incoming
irradiation after absorption and scattering is treated as a volume phenomenon; its distribution in the
incident direction can be expressed as g. =¢qee .

As for the solid phase, convection on the boundary surface is included in the boundary control
volume. However, the thermal radiative loss from the solid phase point to the ambient is considered
to be a surface phenomenon; the energy balance equation is given as follows:

d(T)

- >\'se
dx

0+(pcs<<Ts>4{x:07Te4) =0 (17)

As for the fluid phase, the temperature of the inlet air is given by
Ttlimo = T (18)



NUMERICAL HEAT TRANSFER, PART A . 5

2
7
7
7

|
Jloss

qq
-

Z

Figure 2. Boundary condition for the irradiated surface and back wall of the porous medium.

The diffusive radiative heat loss emits directly from the void of the pore structure to the ambient
environment. The emissivity is considered as a unit, and the blackbody emissive power E, is zero
when the Mashak boundary condition is applied on the virtual wall of the irradiated surface as
follows:

_ LdGa) _ Galeo (19)
SB dy x=0 2

Boundary Condition 2: Back wall

For simplicity, we assume that the radiative flux emitting from the porous medium is perfectly
reflected by the back wall; consequently, the solid phase of the back wall can be considered adiabatic
(see Figure 2). In this manner, energy conservation is obtained by simultaneously considering the
actual heat and fluid flow processes in the porous medium. The boundary condition for the radiative
heat transfer under the assumption above is given as follows [12]:

1 dGqy

3B dx

1 (40u(T)*],_,~Galy ) + 41 = &),
x:L_ 2(2 - 81)

(20)

where H. is the collimated radiative flux arriving at the back wall. As for the solid phase, the energy
balance of heat conduction and diffusive radiation under the impinging collimated irradiation can be
coupled by the boundary condition as follows:

d(Ts)
se dx

1 dGy

. 3P dx

+H. =0 (21)
x=L

The related dimensionless parameters can be defined as follows:

X

X== 22
: 22)
Tt

0 = . (23)
T.

0, = =* 24
- (24)

where the L is the thickness of the porous medium, and T, =300K is the ambient temperature. The
conductive heat flux for the solid phase ¥ can be represented as
Ase 0T

Vs = T oy (25)
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Figure 3. Comparison of the numerical result and the exact solution.

and the diffuse radiative flux W4 and the collimated radiative flux W, can be represented as follows:

.10
V=" S o 20
G
\IJC*% (27)

2.4. Numerical procedure and validation

Governing equations are discretized using a SIMPLE algorithm by applying the finite volume method
[20]. An upwind differencing method is employed to discretize the convective terms. Convergence is
considered to have been reached when the relative variation of temperature between consecutive
iterations is smaller than 10~ for all grid points in the computational domain after the grid
independent test.

To further validate our results, particularly the radiation transfer using the P-1 approximation, we
compared them with the exact solution that considered a plane-parallel slab of an absorbing and iso-
tropically scattering medium with a black cold bottom surface that has no effect of convection, as
shown in Figure 1. For simplicity, the single scattering albedo w is set as the unit. Figure 3 compares
our numerical result with the exact solution for the diffusive radiative flux, which can be presented as

5—¢ ™ .
=|———¢" 28
1 (4 f3em  © ) (28)
where the Ty is the optical thickness at the position back wall (y =0). It can be seen in Figure 3 that
good agreement has been achieved.

3. Results and discussion
3.1. Effect of porosity ¢ and pore size d,

Figure 4a shows the effect of the porosity ¢ on the dimensionless temperature distribution of the fluid
phase O¢ in the incident direction (X direction). It can be seen that 0; increases along the incident
direction. Increasing the porosity ¢ increases the gradient of 6 in the X direction. At low porosity
(¢ =0.85), the dimensionless temperature of the fluid phase 6 initially increases and then decreases,
leading to the creation of a maximum. With the increase of ¢, this maximum generally decreases until
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Figure 4. Effect of porosity ¢ on temperature 6 and heat flux ¥ distributions along the flow direction: (a) 6; and 6, (b) ¥, (c) ¥g4.

the dimensionless temperature distribution of the solid phase 8, monotonically increases in the X
direction, clearly displaying the volumetric effect. The dimensionless temperature of the solid phase
0, at the back wall of the porous medium is more sensitive to the increase of porosity ¢ compared
with that of the fluid phase, thus resulting in greater temperature differences between the solid
and fluid phases.

Figure 4b and 4c depicts the distribution of the conductive heat flux V. and the diffuse radiative
flux W4 in the solid phases. As shown in Figure 4b, when the porosity is relatively low (¢ =0.85), the
solid phase conductive heat flux ¥ is negative (pointing from the back wall to the irradiated surface).
Its absolute value in the X direction gradually reduces to zero and then increases, leading to the cre-
ation of a zero value point that clearly corresponds to the maximum temperature point located inside
rather than on the irradiated surface, that is, the volumetric effect moves the solid phase maximum
temperature inside the porous medium.

When the porosity is relatively high (¢ =0.95), the incoming irradiation can fully enter the porous
medium, most of which can even reach the back wall. This portion of energy, termed H, in Eq. (20),
returns back through conduction of the solid phase; consequently, the direction of ¥, is always nega-
tive, with an extremely significant volumetric effect. This result is consistent with the assumption of
the boundary condition of the back wall, that is, the back wall of the porous medium is opaque and
adiabatic to collimated radiative flux g.. Thus, in the negative X direction, as the porosity ¢ increases,
the conductive heat flux W sharply decreases at the irradiated surface but gradually increases at the
back wall; the volumetric effect is enhanced.



8 P. WANG ET AL.

Similar to the distribution of the conductive heat flux ¥, (see Figure 4c), the diffuse radiative flux
W, at the irradiated surface is also negative. Its absolute value sharply decreases to zero, that is, it con-
tinually increases to a maximum value inside the porous medium, and then gradually decreases. The
essence of this maximum is that the incident radiation Gy initially increases and then decreases in the
X direction, leading to the creation of a maximum value point of W4. Within this variation, there
exists a zero value point where the directions of the diffuse radiative flux are changed that we call
the “separation point” of the W,4. There is actually a separation point for the conductive heat flux
W, that corresponds to the maximum temperature point. In comparing Figure 4b and 4c, it can be
seen that the diffuse radiative flux ¥, is significantly greater than the conductive heat flux ¥, which
indicates that along with interphase convection, radiative heat transfer is the primary means of energy
transportation. In addition, the separation point of the diffuse radiative flux ¥4 coincides with that of
the conductive heat flux ¥, which means that the heat conduction and thermal radiation are coupled
but not totally synchronous.

Figure 5a shows the effect of pore diameter d,, on the distribution of the dimensionless tempera-
ture for the fluid and solid phases (0 and 6;), the conductive heat flux ¥, and the diffuse radiative
flux ¥4 in the X direction. As seen in Figure 5a-5c, the impact of the variation of the pore diameter d,,
on O, B, ¥, and ¥, is similar to that of the porosity ¢. An increase in both porosity and pore diam-
eter results in sparse pore structure, which allows the incoming irradiation to more deeply penetrate
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Figure 5. Effect of pore diameter d, on temperature 8 and heat flux ¥ distributions along the flow direction: (a) 8 and 8;, (b) ¥,
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the porous medium, that is, moving the primary heat transfer process inside the porous medium;
therefore, a significant volumetric effect is obtained.

3.2. Effect of optical thickness Tt

The key feature behind the influence of porosity ¢ and pore diameter dj, on the heat transfer process is
that the change in pore structure reconstructs the distribution of the incident radiative flux in the porous
medium. The combined influence of the pore structure can be primarily represented by the optical
thickness t. To analyze the radiative transfer process by considering the actual properties of the porous
medium, the optical thickness T is chosen as a parameter from 1 to 10, which can be defined as follows:

T=BH (29)
B=1x+ o (30)

Figure 6 shows the effect of the optical thickness T on the dimensionless temperature and heat flux dis-
tributions in the X direction. We selected three different parameters pertaining to the pore structure:
d,=0.003, ¢ =0.98 for T=1; d, = 0.0024, ¢ = 0.92 for T=5; and d,, = 0.003, ¢ = 0.8 for T=10.

It can be seen in Figure 6a that when the optical thickness t decreases, the convection between the
solid and fluid phases is weakened, leading to an increase of the solid phase temperature. However, the
scattering and absorption process of the incoming irradiation simultaneously moves forward in the X
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Figure 6. Effect of optic thickness T on temperature 8 and heat flux ¥ distributions along the flow direction: (a) 8¢ and 6;, (b) ¥,
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direction; consequently, the combined effect of these two mechanisms decreases the solid phase
temperature at the irradiated surface. Therefore, a smaller optical thickness T enhances the LTNE
between the fluid and solid phases at the back wall but weakens it at the irradiated surface, indicating
that the heat exchange within the given thickness of the porous medium is insufficient.

Figure 6b shows the distribution of conductive heat flux ¥, in the solid phase. It can be seen that
when the optical thickness T is large (t=10), the separation point is close to the irradiated surface.
The location of this point corresponds to that of the maximum temperature, which is consistent with
Figure 6a. Moreover, with the decrease in the optical thickness T, the separation point for the con-
ductive heat flux ¥, gradually moves forward in the flow direction. When the optical thickness t
is small (1=1), a “reflux” phenomenon of the conductive heat flux ¥ eventually occurs, that is,
the direction of ¥ from the back wall completely points to the irradiated surface.

With the sharp decays of the collimated radiative flux ¥ close to the irradiated surface, as seen in
Figure 6d, the corresponding incident radiation G4 rapidly increases to the maximum point where
Y4=0, as seen in Figure 6¢, resulting in a separation point of the diffusive radiative flux. When
7= 10, the separation point locates at X=10.1 and advances in the X direction as the optical thickness
T increases (located at X=0.2 when 1=5). When t=1, the separation point disappears and the
direction of ¥4 is completely negative in the X direction.

It can be seen in Figure 6d that the collimated radiative flux W, sharply decreases with the increase
of the optical thickness t. When the optical thickness is low (t= 1), only half of the extinction for the
incoming irradiation has finished through the entire thickness of the porous medium; the remaining
portion will radiate from the back wall of the porous medium in practical applications. Therefore, one
can select a smaller optical thickness and a larger thickness that can reduce the surface heat loss but
increase the absorption of the incoming irradiation.

3.3. Heat loss

The heat loss due to radiative heat transfer between the irradiated surface and the ambient space is the
only method of heat loss for the porous medium in our model. This radiative heat loss can be divided
into two components. One part is the conductive heat flux W}, that transfers from the inside to the
irradiated surface and then radiates into the ambient space through thermal conduction of the solid
matrix. The other part is the diffuse radiative flux ¥4 that directly radiates into the environment
through the pore structure at the irradiated surface.

Figure 7 shows the effect of porosity ¢ and pore diameter d,, on the radiative heat loss ¥ and the
diffuse radiative heat loss W4 at the irradiated surface. It can be seen from Figure 8a that for a con-
stant porosity ¢, V|4 initially increases as d,, increases and then decreases. When the pore diameter d,,
is constant, ¥4 initially increases and then decreases; there is still a maximum point.

However, the conductive heat loss W, significantly decreases as the porosity ¢ increases (see
Figure 7b) due to a decrease in the cross-sectional area of the solid phase exposed to the environment.
With a constant porosity ¢, ¥}, decreases after an initial increase as the pore diameter d, increases.
With a relatively larger porosity (¢ = 0.9), a variation in d,, essentially has no effect on ¥, due to the
very small solid phase cross-sectional area. Thus, with a larger porosity, a larger pore diameter d,,
increases the thermal performance of the porous medium. Upon comparing the two figures, one
can see that the conductive heat loss W, is one order of magnitude lower than the diffuse radiative
heat loss W4, which is the primary source of the total heat loss.

3.4. Efficiency

Geometric parameters such as porosity ¢ and pore diameter d,, are the fundamental parameters that
characterize the intrinsic properties of porous media. Maps for the efficiency n using porosity and
pore diameter as fundamental variables are presented in Figure 8a-8f. It can be clearly seen that
an increase in both porosity and pore diameter (in the direction of the dashed line) enhances the
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Figure 7.  Effect of porosity ¢ and pore diameter dj, on the surface radiative heat loss ¥,; and the diffusive radiative heat loss Wq.

volumetric effect. On this basis, the influence of the ratio of solid to fluid thermal conductivities {, the
flow velocity u, and the volumetric heat transfer coefficient h, on the efficiency n are analyzed. We use
the efficiency 1 to evaluate the thermal performance of the porous medium as a heat exchanger, which
can be defined as the ratio of enthalpy rise of fluid to the total incoming radiation g, on the unit
irradiated area:

Figure 8. Effect of variation in porosity ¢ and pore diameter dj, on efficiency h for (a) u=1, X, =1, {=1,000, (b) u=1, X, =2,
(=1,000, (c) u=1, X,=5,(=1,000, (d) u=1, X,=1, (=100, (e) u=3, X, =1, {=1,000, () u=1, X,=5, (=2,000.
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3.4.1. Effect of volumetric heat transfer coefficient h,

The volumetric heat transfer coefficient between the solid and fluid phases h, significantly
influences the heat transfer process in the porous medium. For the sake of simplicity, we directly
multiply A, by an enhancement factor X}, under the premise of unchanging porous structure para-
meters ¢ and dp,; through this approach, we can analyze the effect of the local interphase heat trans-
fer on the efficiency.

It can be seen from comparing Figure 84, 8b, and 8¢ that an increase of the volumetric heat transfer
coefficient (X, =1, 2, and 5) significantly increases the efficiency n (from 0.65 to 0.68, then to 0.7)
within the entire range of geometric parameters. It is worth noting that when X}, = 1, the efficiency
n has a minimum value point when d,~0.5 mm, ¢ ~0.8; the value of n initially decreases and then
increases along the direction of the dashed arrow line, eventually reaching the maximum value within
the parameter ranges. As Xj, increases, the minimum point of n gradually moves to the left side; when
Xp, = 5, the impact of porosity ¢ and pore diameter d, on n is monotonic within the given range of the
geometric parameters. Thus, it can be seen that an increase in the volumetric heat transfer coefficient
hy is conducive to enhancing the volumetric effect by decreasing the solid phase temperature close to
the irradiated surface.

3.4.2. Effect of fluid velocity u

Increasing the fluid phase velocity u can improve the efficiency 1 of the porous medium by increasing
the volumetric heat transfer coefficient . It can be seen on comparing Figure 8a and 8e that when
the velocity u increases from 3 to 1 ms™ ', the efficiency n is significantly decreased throughout the
entire range of the parameter. However, the efficiency n becomes more sensitive to the change of
the geometric parameters, which means that the increased velocity of the fluid phase decreases the
volumetric effect.

3.4.3. Effect of the ratio of solid to fluid thermal conductivities {

The effect of the ratio of solid to fluid thermal conductivities { on the efficiency n is dependent on
interphase convection. On comparing Figure 8a and 84, we can clearly see that the efficiency increases
with an increase of the ratio of solid to fluid thermal conductivities { in most ranges of the parameter.
However, for a sparse pore structure (¢ = 0.9, d, = 4.0 mm), the efficiency n increases slightly with an
increase of { (from 100 to 1,000).

When the interphase convection is enhanced, this trend becomes more significant. It can be seen
in Figure 8¢ and 8f (increase of Xj, from 1 to 5) that the efficiency n with a sparse pore structure
(9 ~0.8, d, ~ 3 mm) significantly decreases by increasing { (from 1,000 to 2,000), whereas for the com-
pact pore structure, a reversed trend is indicated. Therefore, when the volumetric effect is significant,
decreasing the heat conductivity of the solid phase increases the efficiency; a weak volumetric effect
provides the opposite result.

4. Conclusions

In this work we have analyzed the volumetric effect in a porous medium in the presence of collimated

irradiation. The mechanisms of convective and radiative transport under this effect were revealed. A

modified P-1 approximation with collimated irradiation was introduced to incorporate the radiative

transfer. A boundary condition model incorporating the LTNE condition was developed. The
following conclusions can be drawn based on our analysis:

1. The volumetric effect can be enhanced by increasing the porosity ¢ and pore diameter d,, or
decreasing the optical thickness t. In this manner, the sparse pore structure moves the main heat
transfer process inside the porous medium by allowing more incoming irradiation to enter the
porous medium, consequently obtaining a more significant volumetric effect.

2. The volumetric effect attenuates the LTNE between the solid and fluid phases at the irradiated sur-
face but intensifies it at the back wall. Enhancing the volumetric effect and simultaneously
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increasing the medium thickness can improve the thermal performance of the porous medium in
practical applications.

. Under the impact of the volumetric effect, both the conductive heat flux ¥, and the diffuse radi-
ative flux W4 reverse the flow direction at the irradiated surface, that is, pointing from the inside of
the porous medium toward the outside. In terms of energy transportation, a separation point exists
where the direction of the heat flux for both the conductive and radiative energy changes due to
the volumetric effect.

. An increase in the volumetric heat transfer coefficient h, enhances convection in the high-
temperature region close to the irradiated surface, consequently making the volumetric effect more
significant. However, a high flow velocity u of the fluid phase decreases the volumetric effect. With
a significant volumetric effect, decreasing the ratio of solid to fluid thermal conductivities ¢
improves the efficiency n, whereas under a weak volumetric effect, the result is the opposite.

. The separation point of the diffuse radiative flux ¥4 always lags behind the conductive heat flux
V., which shows that the energy transportation by heat conduction and thermal radiation is
coupled and restricted. Radiative heat transfer dominates the energy transportation in the porous
medium when comparing the diffuse radiative flux W4 with the conductive heat flux ¥,. However,
the conductive heat loss W), at the irradiated surface is also an order of magnitude lower relative to
the diffusive radiative heat loss W4; thus, diffuse radiative heat loss is the primary heat loss within

the porous medium.
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