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ABSTRACT 
This work examines the volumetric effect of convection within a packed bed in 
the presence of collimated irradiation. Using a modified P-1 approximation 
incorporating a local thermal nonequilibrium (LTNE) model, the energy 
transportation through convection and thermal conduction, and collimated 
and diffuse radiative transfer are investigated. The impact of pertinent 
parameters such as porosity φ, pore diameter dp, and optical thickness τ on the 
volumetric effect are analyzed. In addition, the mechanisms of how the 
volumetric effect impacts LTNE and radiative heat loss are revealed. The effect 
of the volumetric heat transfer coefficient hv, the fluid flow velocity u, and the 
ratio of solid to fluid thermal conductivities ζ versus the volumetric effect are 
systematically analyzed and displayed through a number of contour maps to 
assess the efficiency η. Our analysis shows that enhancing the volumetric effect 
and extending the thickness of the porous medium improves the efficiency η. 
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1. Introduction 

The “volumetric effect” phenomenon can occur in a porous medium as the radiative energy is 
converted to the energy of the fluid. A unique feature of the heat transfer process occurring under 
a volumetric effect in porous media is that both the inlet fluid flow and the incoming radiation 
are located at the irradiated side. In addition, the direction of the fluid flow is parallel rather than 
perpendicular to the radiative flux in the porous media. Due to the structural characteristics of porous 
media [1], the incoming radiation and the heat transfer process is extended from “surface” to 
“volume.” Therefore, the outlet fluid temperature should be higher than that of the solid matrix 
on the irradiated surface (see Figure 1). Consequently, higher radiative flux (without reaching the 
temperature limit of the material), less thermal radiative loss, and an increased thermal efficiency 
can be achieved, which is termed the volumetric effect. 

Convective heat transfer processes in porous media as well as local thermal nonequilibrium 
(LTNE) models incorporating the temperature difference between solid and fluid phases have been 
discussed in the literature [2–4]. Variants of this model were offered by Alazmi and Vafai [5] who 
considered the effects of non-Darcy, dispersion, nonequilibrium, and variable porosities. The effect 
of different boundary conditions under LTNE conditions was studied by Yang and Vafai [6]. Thermal 
radiation behavior plays an important role in packed and fluidized beds where the temperatures are 
extreme [7]. Flamant et al. [8] investigated the radiation transfer process in a double-layer structure 
(glass bed and SiC porous layer) by experimentally using a two-flux approximation to obtain the 
temperature distribution. Using the same method, Skocypec et al. [9] analyzed the model for use 
in the oxidized wires in an air receiver; their results compared quite well with the experimental results 
of Chavez and Chaza [10]. Wang et al. [11] proposed a detailed dimensionless LTNE model under a 
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Rosseland approximation for an air receiver. Wang et al. [12] have analyzed the transport of radiative 
energy, under collimated irradiation perpendicular to a packed bed. Some works have focused on 
applications such as solar dish receivers using different numerical methods [13]. 

Little attention has been devoted to the effect of collimated irradiation on a porous bed, and volu-
metric effect revealed from this heat transfer process has not been reported. The purpose of this study 
is to understand the volumetric effect phenomenon under collimated irradiation based on an LTNE 
model in a porous bed. The effect of geometric parameters such as the porosity φ, the pore diameter 
dp, and the optical thickness τ on the volumetric effect of porous media will be examined. Further-
more, energy transportation incorporating thermal conduction, convection, radiative heat transfer, 
and also heat loss will be analyzed from the perspective of the volumetric effect. Finally, the thermal 
efficiency η for a wide range of variations in the geometric parameters, that is, porosity φ and pore 
diameter dp, will be systematically analyzed within a number of contour maps. 

2. Model 

A fundamental configuration composed of a parallel plate channel filled with a porous medium is 
considered and shown in Figure 1. The computational area has a thickness L, and the height H in 
the y direction is assumed to be sufficiently long so that a one-dimensional approximation in the 
direction of the incoming irradiation can be invoked. We also assume that the solid matrix is homo-
geneous and isotropic so that any variations in the solid and fluid phase thermal properties can be 
disregarded. Furthermore, the flow is considered to be steady and fully developed. 

2.1. LTNE model 

Continuum equation: 

r Vh i ¼ 0 ð1Þ

Momentum equation [2,3]: 
qf
u
ðV � rÞVh i ¼

mf
u
r2 Vh i � r Ph if �

mf
K

Vh i �
qf Fu
ffiffiffiffi
K
p ½ Vh i � Vh i�J ð2Þ

Nomenclature 

cp specific heat of fluid at constant pressure 
(J kg� 1 K� 1) 

F inertial coefficient 
dp pore diameter (m) 
G incident radiation 
hsf fluid-to-solid heat transfer coefficient (W m� 2 K) 
K permeability (m2) 
L thickness of a absorber (m) 
Nu Nusselt number 
P pressure (Pa) 
Pr Prandtl number 
q0 initial heat flux (W m� 2) 
q heat flux 
ŝ unit vector in the direction of fluid flow 
T temperature (K) 
u velocity (m s� 1) 
V velocity vector (m s� 1) 
αsf specific surface area of the porous medium (m� 1) 
ε emissivity 
φ porosity 
λ thermal conductivity (W m� 1 K� 1) 
μ dynamic viscosity (kg m� 1 s� 1) 

β extinction coefficient (m� 1) 
σ Stefan� Boltzmann constant 
σs scattering coefficient 
θ dimensionless temperature 
ζ ratio of solid to fluid thermal conductivities 
ρ density (kg m� 3) 
τ optical thickness 
ω single scattering albedo 
Ψ dimensionless heat flux 

Subscripts 
a average 
c collimated 
d diffuse 
e effective/environment 
f fluid phase 
l heat loss 
r radiative 
s solid phase 
t total 
v void 
w wall   
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where ⟨P⟩f is the gauge pressure, and the local volume average of a quantity Φ can be defined as 
Uh i � 1

Vf

R

Vf
UdV ; J is a unit vector oriented along the velocity vector where the permeability K 

and empirical function F which depends primarily on the microstructure of the porous medium 
can be represented as in Vafai [2]: 

K ¼
u3d2

p

150ð1 � uÞ
2 ð3Þ

F ¼
1:75
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
150u3=2

p ð4Þ

Energy equations: 
Fluid phase: 

ðqcpÞf Vh i � r Tfh i ¼ r kfe � r Tfh ið Þ þ hsf asf Tsh i � Tfh ið Þ ð5Þ

Solid phase: 

0 ¼ r � kse � r Tsh i � qrð Þ � hsf asf Tsh i � Tfh ið Þ ð6Þ

where the effective thermal conductivity for the fluid and solid phase are expressed as follows: 

kfe ¼ ukfe ð7Þ
kse ¼ ð1 � uÞkse ð8Þ

A detailed comparison of the correlations for the volumetric heat transfer coefficient hv for the porous 
medium was performed by Wang [14]. As for the large porosity and pore diameter used in this study, 
the empirical correlation established by Younis and Viskanta [15] is selected and can be presented as 
follows: 

hv ¼ 0:819 1 � 733ðdp=LÞ
� �

Re
0:36 1þ155ðdp=LÞ½ �
d ð9Þ

2.2. Radiation transfer 

Due to the collimated irradiation assumption, a modified differential approximation (P-1 model) is 
applied to address the problem. When incident collimated irradiation is removed from the intensity 
field, the remnant intensity can deviate only slightly from the isotropic condition. Similar to the 
classic P-1 model, we treat the remnant portion as fairly diffuse, which is the result of emission 
from the boundary and within the medium, and also the radiation scattered away from the 

Figure 1. Schematic diagram of the volumetric effect phenomenon.  
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collimated irradiation. We thus express the diffuse radiative flux qd and the incident radiation Gd as 
follows: 

rqd ¼ j 4r Tsh i
4
� Gd

� �
þ rsGc ð10Þ

qd ¼ �
1

3b
rGd ð11Þ

Combining the expression of qd and Gd from Eqs. (10) and (11), the differential equation for Gd is 
obtained as 

0 ¼
1

3b
rG2

d þ j 4r Tsh i
4
� Gd

� �
þ rsGc ð12Þ

Meanwhile, qc, the remnant collimated radiative flux after partial extinction through absorption and 
scattering along its path in a direction perpendicular to the boundary, is given by the exact solution: 

qc ¼ ŝGc ¼ q0e� s ð13Þ

where the optical thickness τ is given by τ ¼ β/x, the extinction coefficient β is the sum of the absorption 
κ and the scattering coefficients σs, and the initial incoming irradiation qc ¼ 1 MW. Hsu and Howell 
[16] presented a method of simultaneously inverting the conductivity and extinction coefficient from 
the experimental data. The trend of the change of extinction coefficient shows a good agreement with 
the geometric optics limit prediction [17] in the proper range of geometric parameters: 

b ¼
w

dp
ð1 � uÞ ð14Þ

where the value of Ψ is constant based on the properties of reticulated porous ceramic (RPC) [18]. 
Other experimental test results show that the thermal radiative properties of RPC material are almost 
independent of the solid matrix temperature [19]. The detailed expressions are given as follows: 

j ¼ ð2 � eÞ
3

2dp
ð1 � uÞ ð15Þ

rs ¼ e
3

2dp
ð1 � uÞ ð16Þ

2.3. Boundary conditions 

Boundary Condition 1: Irradiated surface 
The inlet of the fluid flow is the irradiated surface and the only source of radiative heat loss. In the 

model, we disregard the effect of the porous structure on inlet fluid flow and irradiation at the bound-
ary wall. The wall is treated as a transparent virtual surface; that is homogeneous and diffusely gray 
with emissivity ε. Under this assumption, the total incoming irradiation εq0 entering the porous 
medium is constant with the change of its geometric parameters. The remnant part of the incoming 
irradiation after absorption and scattering is treated as a volume phenomenon; its distribution in the 
incident direction can be expressed as qc ¼ εq0e � τ. 

As for the solid phase, convection on the boundary surface is included in the boundary control 
volume. However, the thermal radiative loss from the solid phase point to the ambient is considered 
to be a surface phenomenon; the energy balance equation is given as follows: 

� kse
d Tsh i

dx

�
�
�
�

x¼0
þure Tsh i

4��
x¼0� T4

e

� �
¼ 0 ð17Þ

As for the fluid phase, the temperature of the inlet air is given by 

Tf jx¼0 ¼ Te ð18Þ
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The diffusive radiative heat loss emits directly from the void of the pore structure to the ambient 
environment. The emissivity is considered as a unit, and the blackbody emissive power Eb is zero 
when the Mashak boundary condition is applied on the virtual wall of the irradiated surface as 
follows: 

�
1

3b

dGd

dy

�
�
�
�

x¼0
¼ � u

Gdjx¼0
2

ð19Þ

Boundary Condition 2: Back wall 
For simplicity, we assume that the radiative flux emitting from the porous medium is perfectly 

reflected by the back wall; consequently, the solid phase of the back wall can be considered adiabatic 
(see Figure 2). In this manner, energy conservation is obtained by simultaneously considering the 
actual heat and fluid flow processes in the porous medium. The boundary condition for the radiative 
heat transfer under the assumption above is given as follows [12]: 

�
1

3b

dGd

dx

�
�
�
�
x¼L
¼

e1 4rs Tsh i
4��

x¼L� Gdjx¼L

� �
þ 4ð1 � e1ÞHcjx¼L

2ð2 � e1Þ
ð20Þ

where Hc is the collimated radiative flux arriving at the back wall. As for the solid phase, the energy 
balance of heat conduction and diffusive radiation under the impinging collimated irradiation can be 
coupled by the boundary condition as follows: 

� kse
d Tsh i

dx

�
�
�
�
x¼L
�

1
3b

dGd

dx

�
�
�
�

x¼L
þHc ¼ 0 ð21Þ

The related dimensionless parameters can be defined as follows: 

X ¼
x
L

ð22Þ

hf ¼
Tf

Te
ð23Þ

hs ¼
Ts

Te
ð24Þ

where the L is the thickness of the porous medium, and Te ¼ 300 K is the ambient temperature. The 
conductive heat flux for the solid phase Ψs can be represented as 

ws ¼ �
kse

q0

qTs

qy
ð25Þ

Figure 2. Boundary condition for the irradiated surface and back wall of the porous medium.  
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and the diffuse radiative flux Ψd and the collimated radiative flux Ψc can be represented as follows: 

wd ¼ �
1

3bq0

qGd

qy
ð26Þ

wc ¼
Gc

q0
ð27Þ

2.4. Numerical procedure and validation 

Governing equations are discretized using a SIMPLE algorithm by applying the finite volume method 
[20]. An upwind differencing method is employed to discretize the convective terms. Convergence is 
considered to have been reached when the relative variation of temperature between consecutive 
iterations is smaller than 10� 8 for all grid points in the computational domain after the grid 
independent test. 

To further validate our results, particularly the radiation transfer using the P-1 approximation, we 
compared them with the exact solution that considered a plane-parallel slab of an absorbing and iso-
tropically scattering medium with a black cold bottom surface that has no effect of convection, as 
shown in Figure 1. For simplicity, the single scattering albedo ω is set as the unit. Figure 3 compares 
our numerical result with the exact solution for the diffusive radiative flux, which can be presented as 

qd ¼
5 � e� sH

4þ 3e� sH
� e� s

� �

ð28Þ

where the τH is the optical thickness at the position back wall (y ¼ 0). It can be seen in Figure 3 that 
good agreement has been achieved. 

3. Results and discussion 

3.1. Effect of porosity φ and pore size dp 

Figure 4a shows the effect of the porosity φ on the dimensionless temperature distribution of the fluid 
phase θf in the incident direction (X direction). It can be seen that θf increases along the incident 
direction. Increasing the porosity φ increases the gradient of θf in the X direction. At low porosity 
(φ ¼ 0.85), the dimensionless temperature of the fluid phase θf initially increases and then decreases, 
leading to the creation of a maximum. With the increase of φ, this maximum generally decreases until 

Figure 3. Comparison of the numerical result and the exact solution.  
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the dimensionless temperature distribution of the solid phase θs monotonically increases in the X 
direction, clearly displaying the volumetric effect. The dimensionless temperature of the solid phase 
θs at the back wall of the porous medium is more sensitive to the increase of porosity φ compared 
with that of the fluid phase, thus resulting in greater temperature differences between the solid 
and fluid phases. 

Figure 4b and 4c depicts the distribution of the conductive heat flux Ψc and the diffuse radiative 
flux Ψd in the solid phases. As shown in Figure 4b, when the porosity is relatively low (φ ¼ 0.85), the 
solid phase conductive heat flux Ψs is negative (pointing from the back wall to the irradiated surface). 
Its absolute value in the X direction gradually reduces to zero and then increases, leading to the cre-
ation of a zero value point that clearly corresponds to the maximum temperature point located inside 
rather than on the irradiated surface, that is, the volumetric effect moves the solid phase maximum 
temperature inside the porous medium. 

When the porosity is relatively high (φ ¼ 0.95), the incoming irradiation can fully enter the porous 
medium, most of which can even reach the back wall. This portion of energy, termed Hc in Eq. (20), 
returns back through conduction of the solid phase; consequently, the direction of Ψs is always nega-
tive, with an extremely significant volumetric effect. This result is consistent with the assumption of 
the boundary condition of the back wall, that is, the back wall of the porous medium is opaque and 
adiabatic to collimated radiative flux qc. Thus, in the negative X direction, as the porosity φ increases, 
the conductive heat flux Ψs sharply decreases at the irradiated surface but gradually increases at the 
back wall; the volumetric effect is enhanced. 

Figure 4. Effect of porosity φ on temperature θ and heat flux Ψ distributions along the flow direction: (a) θf and θs, (b) Ψs, (c) Ψd.  
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Similar to the distribution of the conductive heat flux Ψs (see Figure 4c), the diffuse radiative flux 
Ψd at the irradiated surface is also negative. Its absolute value sharply decreases to zero, that is, it con-
tinually increases to a maximum value inside the porous medium, and then gradually decreases. The 
essence of this maximum is that the incident radiation Gd initially increases and then decreases in the 
X direction, leading to the creation of a maximum value point of Ψd. Within this variation, there 
exists a zero value point where the directions of the diffuse radiative flux are changed that we call 
the “separation point” of the Ψd. There is actually a separation point for the conductive heat flux 
Ψs that corresponds to the maximum temperature point. In comparing Figure 4b and 4c, it can be 
seen that the diffuse radiative flux Ψd is significantly greater than the conductive heat flux Ψs, which 
indicates that along with interphase convection, radiative heat transfer is the primary means of energy 
transportation. In addition, the separation point of the diffuse radiative flux Ψd coincides with that of 
the conductive heat flux Ψs, which means that the heat conduction and thermal radiation are coupled 
but not totally synchronous. 

Figure 5a shows the effect of pore diameter dp on the distribution of the dimensionless tempera-
ture for the fluid and solid phases (θf and θs), the conductive heat flux Ψs, and the diffuse radiative 
flux Ψd in the X direction. As seen in Figure 5a–5c, the impact of the variation of the pore diameter dp 
on θf, θs, Ψs, and Ψd is similar to that of the porosity φ. An increase in both porosity and pore diam-
eter results in sparse pore structure, which allows the incoming irradiation to more deeply penetrate 

Figure 5. Effect of pore diameter dp on temperature θ and heat flux Ψ distributions along the flow direction: (a) θf and θs, (b) Ψs, 
(c) Ψd.  
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the porous medium, that is, moving the primary heat transfer process inside the porous medium; 
therefore, a significant volumetric effect is obtained. 

3.2. Effect of optical thickness τ 

The key feature behind the influence of porosity φ and pore diameter dp on the heat transfer process is 
that the change in pore structure reconstructs the distribution of the incident radiative flux in the porous 
medium. The combined influence of the pore structure can be primarily represented by the optical 
thickness τ. To analyze the radiative transfer process by considering the actual properties of the porous 
medium, the optical thickness τ is chosen as a parameter from 1 to 10, which can be defined as follows: 

s ¼ bH ð29Þ

b ¼ jþ rs ð30Þ

Figure 6 shows the effect of the optical thickness τ on the dimensionless temperature and heat flux dis-
tributions in the X direction. We selected three different parameters pertaining to the pore structure: 
dp ¼ 0.003, φ ¼ 0.98 for τ ¼ 1; dp ¼ 0.0024, φ ¼ 0.92 for τ ¼ 5; and dp ¼ 0.003, φ ¼ 0.8 for τ ¼ 10. 

It can be seen in Figure 6a that when the optical thickness τ decreases, the convection between the 
solid and fluid phases is weakened, leading to an increase of the solid phase temperature. However, the 
scattering and absorption process of the incoming irradiation simultaneously moves forward in the X 

Figure 6. Effect of optic thickness τ on temperature θ and heat flux Ψ distributions along the flow direction: (a) θf and θs, (b) Ψs, 
(c) Ψd, (d) Ψc.  
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direction; consequently, the combined effect of these two mechanisms decreases the solid phase 
temperature at the irradiated surface. Therefore, a smaller optical thickness τ enhances the LTNE 
between the fluid and solid phases at the back wall but weakens it at the irradiated surface, indicating 
that the heat exchange within the given thickness of the porous medium is insufficient. 

Figure 6b shows the distribution of conductive heat flux Ψs in the solid phase. It can be seen that 
when the optical thickness τ is large (τ ¼ 10), the separation point is close to the irradiated surface. 
The location of this point corresponds to that of the maximum temperature, which is consistent with 
Figure 6a. Moreover, with the decrease in the optical thickness τ, the separation point for the con-
ductive heat flux Ψs gradually moves forward in the flow direction. When the optical thickness τ 
is small (τ ¼ 1), a “reflux” phenomenon of the conductive heat flux Ψs eventually occurs, that is, 
the direction of Ψs from the back wall completely points to the irradiated surface. 

With the sharp decays of the collimated radiative flux Ψc close to the irradiated surface, as seen in 
Figure 6d, the corresponding incident radiation Gd rapidly increases to the maximum point where 
Ψd ¼ 0, as seen in Figure 6c, resulting in a separation point of the diffusive radiative flux. When 
τ ¼ 10, the separation point locates at X ¼ 0.1 and advances in the X direction as the optical thickness 
τ increases (located at X ¼ 0.2 when τ ¼ 5). When τ ¼ 1, the separation point disappears and the 
direction of Ψd is completely negative in the X direction. 

It can be seen in Figure 6d that the collimated radiative flux Ψc sharply decreases with the increase 
of the optical thickness τ. When the optical thickness is low (τ ¼ 1), only half of the extinction for the 
incoming irradiation has finished through the entire thickness of the porous medium; the remaining 
portion will radiate from the back wall of the porous medium in practical applications. Therefore, one 
can select a smaller optical thickness and a larger thickness that can reduce the surface heat loss but 
increase the absorption of the incoming irradiation. 

3.3. Heat loss 

The heat loss due to radiative heat transfer between the irradiated surface and the ambient space is the 
only method of heat loss for the porous medium in our model. This radiative heat loss can be divided 
into two components. One part is the conductive heat flux Ψls that transfers from the inside to the 
irradiated surface and then radiates into the ambient space through thermal conduction of the solid 
matrix. The other part is the diffuse radiative flux Ψld that directly radiates into the environment 
through the pore structure at the irradiated surface. 

Figure 7 shows the effect of porosity φ and pore diameter dp on the radiative heat loss Ψls and the 
diffuse radiative heat loss Ψld at the irradiated surface. It can be seen from Figure 8a that for a con-
stant porosity φ, Ψld initially increases as dp increases and then decreases. When the pore diameter dp 
is constant, Ψld initially increases and then decreases; there is still a maximum point. 

However, the conductive heat loss Ψls significantly decreases as the porosity φ increases (see 
Figure 7b) due to a decrease in the cross-sectional area of the solid phase exposed to the environment. 
With a constant porosity φ, Ψls decreases after an initial increase as the pore diameter dp increases. 
With a relatively larger porosity (φ ¼ 0.9), a variation in dp essentially has no effect on Ψls due to the 
very small solid phase cross-sectional area. Thus, with a larger porosity, a larger pore diameter dp 
increases the thermal performance of the porous medium. Upon comparing the two figures, one 
can see that the conductive heat loss Ψls is one order of magnitude lower than the diffuse radiative 
heat loss Ψld, which is the primary source of the total heat loss. 

3.4. Efficiency 

Geometric parameters such as porosity φ and pore diameter dp are the fundamental parameters that 
characterize the intrinsic properties of porous media. Maps for the efficiency η using porosity and 
pore diameter as fundamental variables are presented in Figure 8a–8f. It can be clearly seen that 
an increase in both porosity and pore diameter (in the direction of the dashed line) enhances the 
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volumetric effect. On this basis, the influence of the ratio of solid to fluid thermal conductivities ζ, the 
flow velocity u, and the volumetric heat transfer coefficient hv on the efficiency η are analyzed. We use 
the efficiency η to evaluate the thermal performance of the porous medium as a heat exchanger, which 
can be defined as the ratio of enthalpy rise of fluid to the total incoming radiation q0 on the unit 
irradiated area: 

g ¼
_mcpðTo � TiÞ

q0
ð31Þ

Figure 8. Effect of variation in porosity φ and pore diameter dp on efficiency h for (a) u ¼ 1, Xh ¼ 1, ζ ¼ 1,000, (b) u ¼ 1, Xh ¼ 2, 
ζ ¼ 1,000, (c) u ¼ 1, Xh ¼ 5, ζ ¼ 1,000, (d) u ¼ 1, Xh ¼ 1, ζ ¼ 100, (e) u ¼ 3, Xh ¼ 1, ζ ¼ 1,000, (f) u ¼ 1, Xh ¼ 5, ζ ¼ 2,000.  

Figure 7. Effect of porosity φ and pore diameter dp on the surface radiative heat loss Ψls and the diffusive radiative heat loss Ψld.  
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3.4.1. Effect of volumetric heat transfer coefficient hv 

The volumetric heat transfer coefficient between the solid and fluid phases hv significantly 
influences the heat transfer process in the porous medium. For the sake of simplicity, we directly 
multiply hv by an enhancement factor Xh under the premise of unchanging porous structure para-
meters φ and dp; through this approach, we can analyze the effect of the local interphase heat trans-
fer on the efficiency. 

It can be seen from comparing Figure 8a, 8b, and 8c that an increase of the volumetric heat transfer 
coefficient (Xh ¼ 1, 2, and 5) significantly increases the efficiency η (from 0.65 to 0.68, then to 0.7) 
within the entire range of geometric parameters. It is worth noting that when Xh ¼ 1, the efficiency 
η has a minimum value point when dp ∼ 0.5 mm, φ ∼ 0.8; the value of η initially decreases and then 
increases along the direction of the dashed arrow line, eventually reaching the maximum value within 
the parameter ranges. As Xh increases, the minimum point of η gradually moves to the left side; when 
Xh ¼ 5, the impact of porosity φ and pore diameter dp on η is monotonic within the given range of the 
geometric parameters. Thus, it can be seen that an increase in the volumetric heat transfer coefficient 
hv is conducive to enhancing the volumetric effect by decreasing the solid phase temperature close to 
the irradiated surface. 

3.4.2. Effect of fluid velocity u 
Increasing the fluid phase velocity u can improve the efficiency η of the porous medium by increasing 
the volumetric heat transfer coefficient hv. It can be seen on comparing Figure 8a and 8e that when 
the velocity u increases from 3 to 1 m s� 1, the efficiency η is significantly decreased throughout the 
entire range of the parameter. However, the efficiency η becomes more sensitive to the change of 
the geometric parameters, which means that the increased velocity of the fluid phase decreases the 
volumetric effect. 

3.4.3. Effect of the ratio of solid to fluid thermal conductivities ζ 
The effect of the ratio of solid to fluid thermal conductivities ζ on the efficiency η is dependent on 
interphase convection. On comparing Figure 8a and 8d, we can clearly see that the efficiency increases 
with an increase of the ratio of solid to fluid thermal conductivities ζ in most ranges of the parameter. 
However, for a sparse pore structure (φ ¼ 0.9, dp ¼ 4.0 mm), the efficiency η increases slightly with an 
increase of ζ (from 100 to 1,000). 

When the interphase convection is enhanced, this trend becomes more significant. It can be seen 
in Figure 8c and 8f (increase of Xh from 1 to 5) that the efficiency η with a sparse pore structure 
(φ ∼ 0.8, dp ∼ 3 mm) significantly decreases by increasing ζ (from 1,000 to 2,000), whereas for the com-
pact pore structure, a reversed trend is indicated. Therefore, when the volumetric effect is significant, 
decreasing the heat conductivity of the solid phase increases the efficiency; a weak volumetric effect 
provides the opposite result. 

4. Conclusions 

In this work we have analyzed the volumetric effect in a porous medium in the presence of collimated 
irradiation. The mechanisms of convective and radiative transport under this effect were revealed. A 
modified P-1 approximation with collimated irradiation was introduced to incorporate the radiative 
transfer. A boundary condition model incorporating the LTNE condition was developed. The 
following conclusions can be drawn based on our analysis: 
1. The volumetric effect can be enhanced by increasing the porosity φ and pore diameter dp or 

decreasing the optical thickness τ. In this manner, the sparse pore structure moves the main heat 
transfer process inside the porous medium by allowing more incoming irradiation to enter the 
porous medium, consequently obtaining a more significant volumetric effect. 

2. The volumetric effect attenuates the LTNE between the solid and fluid phases at the irradiated sur-
face but intensifies it at the back wall. Enhancing the volumetric effect and simultaneously 
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increasing the medium thickness can improve the thermal performance of the porous medium in 
practical applications. 

3. Under the impact of the volumetric effect, both the conductive heat flux Ψc and the diffuse radi-
ative flux Ψd reverse the flow direction at the irradiated surface, that is, pointing from the inside of 
the porous medium toward the outside. In terms of energy transportation, a separation point exists 
where the direction of the heat flux for both the conductive and radiative energy changes due to 
the volumetric effect. 

4. An increase in the volumetric heat transfer coefficient hv enhances convection in the high- 
temperature region close to the irradiated surface, consequently making the volumetric effect more 
significant. However, a high flow velocity u of the fluid phase decreases the volumetric effect. With 
a significant volumetric effect, decreasing the ratio of solid to fluid thermal conductivities ζ 
improves the efficiency η, whereas under a weak volumetric effect, the result is the opposite. 

5. The separation point of the diffuse radiative flux Ψd always lags behind the conductive heat flux 
Ψc, which shows that the energy transportation by heat conduction and thermal radiation is 
coupled and restricted. Radiative heat transfer dominates the energy transportation in the porous 
medium when comparing the diffuse radiative flux Ψd with the conductive heat flux Ψs. However, 
the conductive heat loss Ψls at the irradiated surface is also an order of magnitude lower relative to 
the diffusive radiative heat loss Ψld; thus, diffuse radiative heat loss is the primary heat loss within 
the porous medium. 
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